Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy.

نویسندگان

  • Christina Schaub
  • Mischa Uebachs
  • Heinz Beck
چکیده

PURPOSE A substantial proportion of epilepsy patients ( approximately 30%) continue to have seizures despite carefully optimized treatment with antiepileptic drugs (AEDs). One key concept to explain the development of pharmacoresistance is that epilepsy-related changes in the properties of CNS drug targets result in AED-insensitivity of these targets. These changes then contribute to drug-resistance on a clinical level. We have tested this hypothesis in hippocampal CA1 neurons in experimental epilepsy. METHODS Using patch-clamp techniques, we thoroughly examined the effects of carbamazepine (CBZ) and phenytoin (PHT) on voltage-gated Na(+) currents (I(Na)) in hippocampal CA1 neurons of sham-control and chronically epileptic rats. RESULTS We find that there were significant changes in the effects of PHT, but not CBZ on the voltage-dependence of inactivation, resulting in a significant reduction in voltage-dependent blocking effects in chronically epileptic animals. Conversely, CBZ effects on the time course of recovery from inactivation of I(Na) were significantly less pronounced in epileptic compared to sham-control animals, whereas PHT effects remained unaltered. CONCLUSIONS Our findings indicate that AED-sensitivity of Na(+) currents is reduced in chronic epilepsy. The reduction in sensitivity is due to different biophysical mechanisms for CBZ and PHT. Furthermore, comparison to published work suggests that the loss of AED-sensitivity is less pronounced in CA1 neurons than in dentate granule neurons. Thus, these results suggest that target mechanisms of drug resistance are cell type and AED specific. Unraveling these complex mechanisms is likely to be important for a better understanding of the cellular basis of drug-resistant epilepsy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر استیل آل کارنیتین در جلوگیری از تحلیل نورون‌های هیپوکمپ و جوانه زدن فیبرهای خزه‌ای در مدل تجربی صرع گیجگاهی در موش صحرایی

    Background & Aims : Temporal lobe epilepsy is due to structural and metabolic changes in hippocampus including marked degeneration of neurons. Considering some evidences on antiepileptic and neuroprotective activity of acetyl L carnitine (ALC), this study was undertaken to evaluate the preventive effect of ALC on structural changes in hippocampus in an experimental model of temporal lobe ep...

متن کامل

Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats.

About 20-30% of patients with epilepsy continue to have seizures despite carefully monitored treatment with antiepileptic drugs. The mechanisms explaining why some patients' respond and others prove resistant to antiepileptic drugs are poorly understood. It has been proposed that pharmacoresistance is related to reduced sensitivity of sodium channels in hippocampal neurons to antiepileptic drug...

متن کامل

Heterogeneous effects of antiepileptic drugs in an in vitro epilepsy model--a functional multineuron calcium imaging study.

Epilepsy is a chronic brain disease characterised by recurrent seizures. Many studies of this disease have focused on local neuronal activity, such as local field potentials in the brain. In addition, several recent studies have elucidated the collective behavior of individual neurons in a neuronal network that emits epileptic activity. However, little is known about the effects of antiepilepti...

متن کامل

Antiepileptic Drugs and Mental Health Status of Patients with Epilepsy

Many patients with epilepsy suffer also from coexisting psychological problems. These mental co-morbidities have a significant impact on quality of life of patients with epilepsy. Recent studies have shown that although antiepileptic drugs (AEDs) treat epilepsy, they may increase risk of mental disorders in these patients . Due to the lack of adequate research in this area, we assess...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epilepsia

دوره 48 7  شماره 

صفحات  -

تاریخ انتشار 2007